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Abstract

Many opportunities for easy, big-win, program optimizations are
missed by compilers. This is especially true in highly layered Java
applications. Often at the heart of these missed optimization op-
portunities lie computations that, with great expense, produce data
values that have little impact on the program’s final output. Con-
structing a new date formatter to format every date, or populating a
large set full of expensively constructed structures only to check its
size: these involve costs that are out of line with the benefits gained.
This disparity between the formation costs and accrued benefits of
data structures is at the heart of much runtime bloat.

We introduce a run-time analysis to discover these low-utility
data structures. The analysis employs dynamic thin slicing, which
naturally associates costs with value flows rather than raw data
flows. It constructs a model of the incremental, hop-to-hop, costs
and benefits of each data structure. The analysis then identifies
suspicious structures based on imbalances of its incremental costs
and benefits. To decrease the memory requirements of slicing,
we introduce abstract dynamic thin slicing, which performs thin
slicing over bounded abstract domains. We have modified the IBM
J9 commercial JVM to implement this approach.

We demonstrate two client analyses: one that finds objects that
are expensive to construct but are not necessary for the forward
execution, and second that pinpoints ultimately-dead values. We
have successfully applied them to large-scale and long-running
Java applications. We show that these analyses are effective at
detecting operations that have unbalanced costs and benefits.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Memory management, optimization, run-
time environments; F.3.2 [Logics and Meaning of Programs]: Se-
mantics of Programming Languages—Program analysis; D.2.5
[Software Engineering]: Testing and Debugging—Debugging aids

General Terms Languages, Measurement, Performance

Keywords Memory bloat, abstract dynamic thin slicing, cost-
benefit analysis
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1. Introduction

The family of dataflow optimizations does a good job in finding and
fixing local program inefficiencies. Through an iterative process
of enabling and pruning passes, a dataflow optimizer reduces a
program’s wasted effort. Inlining, scalar replacement, useless store
elimination, dead code removal, and code hoisting combine in often
powerful ways. However, our experience shows that a surprising
number of opportunities of this ilk, ones that would be easy to
implement for a developer, remain untapped by compilers [19, 34].

Despite the commendable accomplishments of the commercial
JIT teams, optimizers seem to have reached somewhat of an im-
passe [16, 22]. In a typical large-scale commercial application, we
routinely find missed opportunities that can yield substantial perfor-
mance gains, in return for a small amount of developer time. This
is only true, however, if the problem is clearly identified for them.
The sea of abstractions can easily hide what would be immediately
obvious to a dataflow optimizer as well as a human expert.

In this regard, developers face the very same impasse that JITs
have reached. We write code that interfaces with a mountain of
libraries and frameworks. The code we write and use has been ex-
plicitly architected to be overly general and late bound, to facilitate
reuse and extensibility. One of the primary effects of this style of
development is to decrease the efficacy of inlining [29], which is a
lynchpin of the dataflow optimization chain. A JIT often can not,
in a provably safe way, specialize across a vast web of subroutine
calls; a developer should not start optimizing the code until defini-
tive evidence is given that the generality and pluggability cost too
dearly.

However, if we wish to enlist the help of humans, we cannot
have them focus on every tiny detail, as a compiler would. Ineffi-
ciencies are the accumulation of minutiae, including a large volume
of temporary objects [11, 29], highly-stale objects [5, 26], exces-
sive data copies [34], and inappropriate collection choices [28, 35].
The challenge is to help the developers perform dataflow-style op-
timizations by providing them with relatively small problems.

Very often, the required optimizations center around the forma-
tion and use of data structures. Many optimizations are as simple
as hoisting an object constructor out of a loop. In other cases, code
paths must be specialized to avoid frequent expensive conditional
checks that are always true, or to avoid the expense of computing
data values hardly, if ever, used. In each of these scenarios, a de-
veloper, enlisted to tune these problems, needn’t be presented with
a register-transfer dataflow graph. There may exist larger opportu-
nities if they focus on high-level entities, such as how whole data
structures are being built up and used.
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Cost and benefit A primary symptom of these missed optimiza-
tion opportunities is an imbalance between costs and benefits. The
cost of forming a data structure, of computing and storing its val-
ues, are out of line with the benefits gained over the uses of those
values. For example, the DaCapo chart benchmark creates many
lists and adds thousands of data structures to them, for the sole pur-
pose of obtaining list sizes. The actual values stored in the list en-
tries are never used. These entries have non-trivial formation costs,
but contain values of zero benefit to the end goal of the program.

In this paper, we focus on these low-utility data structures. A
data structure has low utility if the cumulative costs of creating
its member fields outweighs a weighted sum over the subsequent
uses of those fields. For this paper, we compute these based on
the dynamic flows that occur during representative runs. The cost
of a member field is the total number of bytecode instructions
transitively required to produce it; each instruction is treated as
having unit cost. The weighted benefit of this field depends on how
it is used; we consider three cases: a field that reaches program
output has infinite weight; a field that is used to (transitively)
produce a new value written into another field has a weight equal
to the work done (on the stack) to create that new value; finally, a
field that is used for neither has zero weight. We show how these
simple, heuristic assignments of cost and benefit are sufficient to
identify many important, large chunks of suboptimal work.

Abstract thin slicing formulation A natural way of computing
cost and benefit for a value produced by an instruction i is to
perform dynamic slicing and calculate the numbers of instructions
that can reach i (i.e., for computing cost) and that are reachable
from i (i.e., for computing benefit) in the dynamic dependence
graph.

Conventional dynamic slicing [33, 37, 38, 40] does not distin-
guish flows along pointers from flows along values. Consider an
example assignment b.f = g(a.f). The cost of the value b.f
should include the cost of computing the field a.f, plus the costs of
the g logic. A dynamic slicing approach would also include the cost
of computing the a pointer. An approach based on thin slicing [30]
would exclude any pointer computation cost. When analyzing the
utility of data structures, this is a more useful approach. If the object
referenced by a is expensive to construct, then its cost should be as-
sociated with the objects involved in facilitating that pointer com-
putation. For example, had there existed another assignment c.g
= a, c would be the object to which a’s cost should be attributed,
not b. We therefore formulate our solution on top of dynamic thin
slicing. By separating pointer computations from value flow, this
approach naturally assigns formation costs to data structures.

Dynamic thin slicing, in general, suffers from a problem com-
mon to most client analyses of dynamic slicing [2, 9, 34, 41]: large
memory requirements. While there exists a range of strategies to
reduce these costs [15, 27, 33, 38, 39, 41], it is still prohibitively
expensive to perform whole-program dynamic slicing. The amount
of memory consumed by these approaches is a function of the num-
ber of instruction instances (i.e., depending completely on dynamic
behavior), which is very large, and also unbounded.

To improve the scalability of thin slicing, we introduce ab-
stract dynamic thin slicing, a technique that applies thin slicing over
bounded abstract domains that divide equivalent classes among in-
struction instances. The resulting dependence graph contains ab-
stractions of instructions, rather than their runtime instances. The
key insight here is that, having no knowledge of the client that will
use the profiles, traditional slicing captures every single detail of
the execution, much of which is not needed at all by the client.
By taking into account the semantics of the client (encoded by
the bounded abstract domain) during the profiling, one can record
only the abstraction of the whole execution profiles that satisfies the
client, leading to significant time and space overhead reduction. For

example, with abstract dynamic thin slicing, the amount of mem-
ory required for the dependence graph is bounded by the number
of abstractions.

Section 2 shows that, in addition to cost-benefit analysis, such
slicing can solve a range of other backward dynamic flow problems
that exhibit bounded-domain properties.

Relative costs and benefits How far back should costs accumu-
late, and how far forward should benefits accrue? A straightfor-
ward application of dynamic (traditional or thin, concrete or ab-
stract) slicing would suffer from the ab initio, ad finem problem:
costs would accumulate from the beginning, and benefits would
accrue to the end of the program’s run. Values produced later dur-
ing the execution are highly likely to have larger costs than values
produced earlier. In this case, there would not exist a correlation
between high cost and actual performance problems, and such an
analysis would not be useful for performance analysis. To alleviate
this problem, we introduce the notion of relative cost and benefit.
The relative cost of a data structure D is computed as the amount
of work performed to construct D from other data structures that
already exist in the heap. The relative benefit of D is the flip side
of this: the amount of work performed to transform data read from
D in order to construct other data structures. We show how to com-
pute the relative costs and benefits over the abstractions; these are
termed the relative abstract cost and relative abstract benefit.

Implementation and experiments To help the programmer diag-
nose performance problems, we introduce several cost-benefit anal-
yses that take as input the abstract dynamic dependence graph and
report information related to the underlying causes. Section 3 de-
fines in detail one of these analyses, which computes relative costs
and benefits at the level of data structures by aggregating costs and
benefits for individual heap locations.

These analyses have been implemented in the IBM J9 com-
mercial JVM and successfully applied to large-scale and long-
running applications such as derby, tomcat and trade. Section 4
presents an evaluation of analysis expenses. A shadow heap is used
to record information about fields of live objects [24]. The depen-
dence graph consumes less than 20 megabytes across the applica-
tions and benchmarks tested. The current prototype implementation
imposes an average slowdown of 71 times when whole-program
tracking is enabled. We show that it is possible to reduce overhead
significantly if one tracks only important phases. For example, by
tracking only the steady-state portion of a server’s run, overheads
are reduced by up to 10×. This overhead, admittedly high, has
nonetheless proved acceptable for performance tuning.

Section 4 describes six case studies. Using the tool, we found
hundreds of performance problems, and eliminating them resulted
in 2% – 37% performance improvements. These problems include
inefficiencies caused by common programming idioms, repeated
work whose results need to be cached, computation of redundant
data, and choices of unnecessary expensive operations. Some of
these finding also provide useful insights for automatic code opti-
mization in compilers.

The contributions of this work are:

• Cost and benefit profiling, a methodology that identifies run-
time inefficiencies by understanding the cost of producing val-
ues and the benefit of consuming them.

• Abstract dynamic thin slicing, a general technique that performs
dynamic thin slicing over bounded abstract domains. It pro-
duces much smaller and more relevant slices than traditional
dynamic slicing and can be used for cost-benefit analysis and
for other dynamic analyses.

• Relative cost-benefit analysis which reports data structures that
have unbalanced cost-benefit rates.
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• A J9-based implementation and six case studies using real-
world programs, demonstrating that the tool can help a pro-
grammer to find opportunities for performance improvements.

2. Cost Computation Using Abstract Slicing

This section formalizes the proposed technique for abstract dy-
namic thin slicing, and shows several clients that can take advan-
tage of this technique. Next, the definition of cost is presented to-
gether with a run-time profiling technique that constructs the nec-
essary abstract data dependence graph. While our tool works on the
low-level JVM intermediate representation, the discussion of the al-
gorithms uses a three-address-code representation of the program.
In this representation, each statement corresponds to a bytecode in-
struction (i.e., it is either a copy assignment a=b or a computation
a=b+c that contains only one operator). We will use terms state-
ment and instruction interchangeably, both meaning a statement in
the three-address-code representation.

2.1 Abstract Dynamic Thin Slicing

The computation of costs of run-time values appears to be a prob-
lem which can be solved by associating a small amount of track-
ing data with each storage location and by updating this data as
the corresponding location is written. A similar technique has been
adopted, for example, in taint analysis [25], where the tracking data
is a simple taint mark. In the setting of cost computation, the track-
ing data associated with each location records the cumulative cost
of producing the value that is written into the location. For an in-
struction s, a simple approach of updating the tracking data for the
left-hand-side variable is to store in it the sum of the tracking data
for all right-hand-side variables, plus the cost of s itself.

However, this simple approach may double-count cost. To il-
lustrate this, consider the example code shown in Figure 1. Using
the taint-like flow tracking (shown in Figure 1 (a)), the cost tb of
producing the value in b is 8, which must be incorrect as there are
only 5 instructions in the program. This is because the cost of c is
included in the costs of both d and b. As the costs of c and d are
added to obtain b’s cost, c’s cost is considered twice. While this
difference is small for the example, it can quickly accumulate and
become significant when the size of the program increases. For ex-
ample, as we have observed, this cost can quickly grow and cause a
64-bit integer to overflow for even moderate-size applications. Fur-
thermore, such dynamic flow tracking does not provide any addi-
tional information about the data flow and its usefulness for helping
diagnose performance problems is limited.

To avoid double-counting in the computation of cost tb, one
could record all instruction instances before variable b is written
and their dependences (as shown in Figure 1 (b)). Cost tb can then
be computed by traversing backward the dependence graph from
instruction 4 and counting the number of instructions. There are
many other dynamic analysis problems that have similar charac-
teristics. These problems, for example, include null value propa-
gation analysis [9], dynamic object type-state checking [2], event-
based execution fast forwarding [41], copy chain profiling [34], etc.
One common feature of this class of dynamic analyses is that they
require additional trace information recorded for the purpose of di-
agnosis or debugging, as opposed to simpler approaches such as
taint analysis. Because the solutions these analyses need to com-
pute are history-related and can be obtained by traversing backward
the recorded traces, we will refer to them as backward dynamic flow
(BDF) problems. In general, BDF problems can be solved by dy-
namic slicing [14, 33, 37, 38, 40]. In our example of cost computa-
tion, the cost of a value produced by an instruction is essentially the
size of the data-dependence-based backward dynamic slice starting
from the instruction.

1 a = 0;
2 c = f(a);
3 d = c * 3;
4 b =  c + d;
5 int f(int e){
6   return e >> 2;  
7 }

ta = 1;
tc = tf + 1;
td = tc + 1;
tb = tc + td + 1;
tf = te + 1; 

2

4

1

(a) (b)

6

3

Figure 1. An example illustrating the double-counting problem:
(a)Example code and the step-wise updating of tracking data. ti

denotes the tracking data for variable i; (b)its dynamic data de-
pendence graph where instructions are represented by their line
numbers. An edge represents a def-use relationship between two
instructions.

In dynamic slicing, the instrumented program is first executed to
obtain an execution trace with control flow and memory reference
information. At a pointer dereference, both the data that is refer-
enced and the pointer value (i.e., the address of the data) are cap-
tured. Our technique considers only data dependences and the con-
trol predicates are treated in a special way as described later. Based
on a dynamic data dependence graph inferred from the trace, a slic-
ing algorithm is executed. Let I be the domain of static instructions
and N be the domain of natural numbers.

DEFINITION 1. (Dynamic Data Dependence Graph). A dynamic
data dependence graph (V, E ) has node set V ⊆ I × N , where
each node is a static instruction annotated with an integer j, repre-
senting the j-th occurrence of this instruction in the trace. An edge

from aj to bk (a, b ∈ I and j, k ∈ N ) shows that the j-th occur-
rence of a writes a location that is then used by the k-th occurrence
of b, without an intervening write to that location. If an instruction
accesses a heap location through v.f , the reference value in stack
location v is also considered to be used.

Thin slicing [30] is a static technique that focuses on statements
that flow values to the seed, ignoring the uses of base pointers. In
this paper, the technique is re-stated for dynamic analysis. A thin
data dependence graph, formed from the execution trace, has ex-
actly the same set of nodes as its corresponding dynamic data de-
pendence graph. However, for an access v.f , the base pointer value
in v is not considered to be used. This property makes thin slicing
especially attractive for computing costs for programs that make
extensive use of object-oriented data structures—with traditional
slicing, the cost of each data element retrieved from a data struc-
ture would include the cost of producing the object references that
form the layout of the data structure, resulting in significant im-
precision. A thin data dependence graph contains fewer edges and
leads to smaller slices. Both for standard and thin dynamic slicing,
the amount of memory required for representing the dynamic de-
pendence graph cannot be bounded before or during the execution.

For some BDF problems, there exists a certain pattern of
backward traversal that can be exploited for increased efficiency.
Among the instruction instances that are traversed, equivalence
classes can usually be seen. Each equivalence class is related to
a certain property of an instruction from the program code, and
distinguishing instruction instances in the same equivalence class
(i.e., with the same property) does not affect the analysis precision.
Moreover, it is only necessary to record one instruction instance
online as the representative for that equivalence class, leading to
significant space reduction of the generated execution trace. Sev-
eral examples of such problems will be discussed shortly.

To solve such BDF problems, we propose to introduce the se-
mantics of a target analysis into profiling, by defining a problem-
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1  File f = new File();
2  f.create();
3  i = 0;
4  if(i < 100){
5      f.put(...);
6      …
7      f.put(...);
8   i++; goto 4; }
9   f.close();
10 char b = f.get();

1*+,-./01
2*+,-./01
5*+,-.2301
9*+,-.2401
10*+,-.501

(b)

5*+,-.2401
7*+,-.2401 1  a1 = new A();

2  b = a1.f;
3  a2 = new A();
4  c = b;
5  a2.f = c;
6  d = new D();
7  e = a2.f;
8  h = e + 1;
9  d.g = h;

(c)

1
6

2789:
3

6
4789:

6
6

57;9:
8

6
9

6 77;9:
Figure 2. Data dependence graphs for three BDF problems. Line numbers are used to represent the corresponding instructions. Arrows
with solid lines are def-use edges. (a) Null origin tracking. Instructions that handle primitive-typed values are omitted; (b) Typestate history
recording; arrows with dashed lines represent “next-event” relationships. (c) Extended copy profiling; Oi denotes the allocation site at line i.

specific bounded abstract domain D containing identifiers that de-
fine equivalence classes in N . An unbounded subset of elements in
N can be mapped to an element in D. For a particular instruction
a ∈ I, an abstraction function fa : N → D is used to map aj ,
where j ∈ N , to an abstracted instance ad. This yields an abstrac-
tion of the dynamic data dependence graph. For our purposes we
are interested in thin slicing. The corresponding dependence graph
will be referred as an abstract thin data dependence graph.

DEFINITION 2. (Abstract Thin Data Dependence Graph). An ab-
stract thin data dependence graph (V ′, E ′, F , D) has node set
V ′ ⊆ I × D, where each node is a static instruction annotated
with an element d ∈ D, denoting the equivalence class of instances

of the instruction mapped to d. An edge from aj to bk (a, b ∈ I
and j, k ∈ D) shows that an instance of a mapped to aj writes

a location that is used by an instance of b mapped to bk, without
an intervening write to that location. If an instruction accesses the
heap through v.f , the base pointer value v is not considered to be
used. F is a family of abstraction functions fa, one per instruction
a ∈ I.

For simplicity, we will use “dependence graph” to refer to the
abstract thin data dependence graph defined above. Note that for
an array element access, the index used to locate the element is
still considered to be used. The number of static instructions (i.e.,
the size of I) is relatively small even for large-scale programs, and
by carefully selecting domain D and abstraction functions fa, it is
possible to require only a small amount of memory for the graph
and yet preserve necessary information needed for a target analysis.

Many BDF problems exhibit bounded-domain properties. Their
analysis-specific dependence graphs can be obtained by defin-
ing the appropriate abstraction functions. The following examples
show a few analyses and their formulations in our framework.

Propagation of null values When a NullPointerException
is observed in the program, this analysis locates the program point
where the null value starts propagating and the propagation flow.
Compared to existing null value tracking approaches (e.g., [9])
that track only the origin of a null value, this analysis also provides
information about how this value flows to the point where it is
dereferenced, allowing the programmer to quickly track down the
bug. Here, D contains two elements null and not null. Abstraction
function fa(j) = null if aj produces null and not null otherwise.
Based on the dependence graph, the analysis traverses backward
from node anull where a ∈ I is the instruction whose execution
causes the NullPointerException. The node that is annotated
with null and that does not have incoming edges represents the
instruction that created the null value originally. Figure 2 (a)

shows an example of this analysis. Annotation nn denotes not null.
A NullPointerException is thrown when line 4 is reached.

Recording typestate history Proposed in QVM [2], this analysis
tracks the typestates of the specified objects and records the his-
tory of state changes. When the typestate protocol of an object is
violated, it provides the programmer with the recorded history. In-
stead of recording every single event in the trace, a summarization
approach is employed to merge these events into DFAs. We show
how this analysis can be formulated as an abstract slicing problem,
and the DFAs can be easily derived from the dependence graph.

Domain D is O × S , where O is a specified set of allocation
sites (whose objects need to be tracked) and S is a set of predefined
states s0, s1, . . . , sn of the objects created by the allocation sites
in O. Abstraction function fa(j) = (alloc(aj ), state(aj )) if in-
struction instance aj invokes a method on an object ∈ O, and the
method can cause the object to change its state. The function is un-
defined otherwise (i.e., all other instructions are not tracked). Here
alloc is a function that returns the allocation site of the receiver
object at aj , and function state returns the state of this object im-
mediately before aj . The state can be stored as a tag of the object,
and updated when a method is invoked on this object.

An example is shown in Figure 2 (b). Consider the object O1

created at line 1, with states ‘u’ (uninitialized), ‘oe’ (opened and
empty), ‘on’ (opened but not empty), and ‘c’ (closed). Arrows with
dashed lines denote the “next-event” relationships. These relation-
ships are added to the graph for constructing the DFA described in
[2], and they can be easily obtained by memorizing the last event
on each tracked object. When line 10 is executed, the typestate
protocol is violated because the file is read after it is closed. The
programmer can easily identify the problem when she inspects the
graph and finds that line 10 is executed on a closed file. While the
example shown in Figure 2 (b) is not strictly a dependence graph,
the “next-event” edges can be conceptually thought of as def-use
edges between nodes that write and read the object state tag.

Extended copy profiling Work in [34] describes how to profile
copy chains that represent the transfer of the same data without
any computation. Nodes in a copy chain are fields of objects repre-
sented by their allocation sites (e.g., Oi.f ). An edge connects two
field nodes, abstracting away intermediate stack copies. Each stack
variable has a shadow stack location, which records the object field
from which its value originated. A more powerful version of this
analysis is to include intermediate stack nodes along copy chains,
because they are important for understanding the methods through
which the values are transferred.

Domain D is O × P , where O is the set of allocation sites and
P is the set of field identifiers. A special element ⊥ ∈ D shows
that the data does not come from any field (e.g., it is a constant or
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Figure 3. (a) Code example. (b) Corresponding dependence graph Gcost; nodes in boxes/circles write/read heap locations; underlined nodes
create objects. (c) Nodes in method A.foo (Node), their frequencies (Freq), and their abstract costs (AC); (d) Relative abstract costs i-RAC
and benefits i-RAB for the three allocation sites; i is the level of reference edges considered.

a reference to a newly-created object). Abstraction function fa (j)
= map(shadow(aj )), if a is a copy instruction, and ⊥ otherwise.
Function shadow maps an instruction instance to the tracking data
(i.e., the object field o.g from which the value originated) contained
in the shadow location of its left-hand-side variable, and function
map maps o.g to its static abstraction Oi.g. An example is shown
in Figure 2 (c). For instance, to identify the intermediate stack
locations b and c in the copy chain between O1.f and O3.f , one
can traverse backward the dependence graph from 5O3.f (which
writes to f in the object created by O3). The traversal follows nodes
that are annotated with O1.f , until it reaches the node 2O1.f which
reads that field.

Similarly to how a data flow analysis or an abstract interpreter
employs static abstractions, abstract dynamic slicing uses abstract
domains for dynamic data flow, recognizing that it is only necessary
to distinguish instruction instances that are important for the client
analysis. The rest of the paper focuses on using this approach to
perform cost-benefit analyses that target a class of bloat problems.

2.2 Cost Computation

DEFINITION 3. (Absolute Cost). Given a non-abstract thin data
dependence graph G and an instruction instance aj (a ∈ I, j ∈
N ) that produces a value v, the absolute cost of v is the number of

nodes that can reach aj in G.

Absolute costs are expensive to compute and it does not make
much sense to present them to the programmer, unless they are
aggregated in some meaningful way across instruction instances.
In our approach the instructions are abstracted based on dynamic
calling contexts. The contexts are represented with object sensitiv-
ity [17], which is well suited for modeling of object-oriented data
structures.

A calling context is represented by a chain of static abstractions
(i.e., allocation sites Oi ∈ O) of the receiver objects for the invo-
cations on the call stack. Domain Dcost contains all possible chains
of allocation sites. Abstraction function fa(j) = objCon(cs(aj )),
where function cs takes a snapshot of the call stack when aj is
executed, and function objCon maps this snapshot to the corre-
sponding chain of allocation sites Oi for the run-time receiver ob-
jects. Dcost is not finite in the presence of recursion, and even for
a recursion-free program its size is exponential. We limit the size
of Dcost further to be a fixed number s (short for “slots”), specified

by the user as a parameter of the profiling tool. Now the domain is
simply the set of integers 0 to s−1. An encoding function h is used
to map an allocation site chain to such an integer; the description
of h will be presented shortly. With this approach, the amount of
memory required for the analysis is linear in program size.

Each node in the dependence graph is annotated with an integer,
representing the execution frequency of the node. Based on these
frequencies, an abstract cost for each node can be computed as
an approximation of the total costs of values produced by the
instruction instances represented by the node.

DEFINITION 4. (Abstract Cost). Given a dependence graph Gcost ,

the abstract cost of a node nk is Σaj |aj nk freq(aj), where aj
 

nk if there is a path from aj to nk in Gcost , or aj = nk.

Example Figure 3 shows a code example and its dependence
graph for cost computation. While some statements (line 29) may
correspond to multiple bytecode instructions, they are still consid-
ered to have unit costs. These statements are shown for illustration
purposes and will be broken into multiple ones by our tool.

All nodes are annotated with their object contexts (i.e., elements
of Dcost ). For ease of understanding, the contexts are shown in
their original forms, and the tool actually uses the encoded forms
(through function h). Nodes in boxes represent instructions that
write heap locations. Dashed arrows represent reference edges;
these edges can be ignored for now. The table shown in part (c)
lists nodes for the execution of method A.foo (invoked by the call
site at line 34), their frequencies, and their abstract costs.

The abstract cost of a node computed by this approach may
be larger than the exact sum of absolute costs of the values pro-
duced by the instruction instances represented by the node. This is
because for a node a such that a  n, there may not exist any
dependences between some instruction instances of a and some
instruction instances of n. This difference can be large when the
abstract cost is computed after traversing long dependence graph
paths, and the imprecision gets magnified. More importantly, this
cost represents the cumulative effort that has been made from the
very beginning of the execution to produce the values. It may still
not make much sense for the programmer to diagnose problems
using abstract costs, as it is almost certain that nodes representing
instructions executed later have larger costs than those representing
instructions executed earlier. In Section 3, we address this problem
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by computing a relative abstract cost, which measures execution
bloat at the object level by traversing dependence graph paths con-
necting nodes that read and write object fields.

Special nodes and edges in Gcost To measure execution bloat,
we augment the graph with two special kinds of nodes: predicate
nodes and native nodes, both representing the consumption of data.
A predicate node is created for each if statement, and a native node
is created for each call site that invokes a native method. These
nodes do not have associated contexts. In addition, we mark nodes
that allocate objects (underlined in Figure 3 (b)), that read heap
locations (nodes in circles), and that write heap locations (nodes in
boxes). These nodes are later used to identify object structures.

Reference edges are used to represent reference relationships.
For each heap store a.f = b, a reference edge is created to con-
nect the node representing this store (i.e., a boxed node) and the
node allocating the object that flows to a (i.e., an underlined node).
For example, there exists a reference edge from 28O32 to 24O32 ,
because 24O32 allocates the array object and 28O32 stores an inte-
ger to the array (which is similar to writing an object field). These
edges will be used to aggregate costs for individual heap locations
to form costs for objects and data structures.

2.3 Construction of Gcost

Selecting encoding function h There are two steps in mapping an
allocation site chain to an integer d ∈ Dcost (i.e., [0, . . . , s−1]). The
first step is to encode the chain into a probabilistically unique value
that will accurately represent the original object context chain.
An encoding function proposed in [6] is adapted to perform this
mapping: gi = 3 * gi−1 + oi, where oi is the i-th allocation site ID
in the chain and gi−1 is the probabilistic context value computed
for the chain prefix with length i−1. While simple, this function
exhibits very small context conflict rate, as demonstrated in [6]. In
the second step, this encoded value is mapped to an integer in the
range [0, . . . , s−1] using a simple mod operation.

Profiling for constructing Gcost Instead of recording the full
execution trace and building a dependence graph offline, we use an
online approach that combines dynamic flow tracking and slicing.
The key issue is to identify the data dependences online, which
can be done using shadow locations [23, 24]. For each location l,
a shadow location l′ contains the address of the dependence graph
node representing the instruction instance that wrote the last value
of l. When an instruction is executed, the node n to which this
instruction instance is mapped is retrieved, and all nodes mi that
last wrote the locations read by the instruction are identified. Edges
are then added between n and each mi.

For a local variable, its shadow location is a new local variable
on the stack. For heap locations we use a shadow heap [24] that
has the same size as the Java heap. To enable quick access, there is
a predefined distance dist between the starting addresses of these
two heaps. For a heap location l, the address of l′ can be quickly
obtained as l + dist . A tracking stack is maintained in parallel with
the call stack to pass data dependence relationships across calls. For
each invocation, the tracking stack also passes the receiver object
chain for the caller. The next context is obtained by concatenating
the caller’s chain and the allocation site of this.

Instrumentation semantics Figure 4 shows a list of inference
rules defining the instrumentation semantics. Each rule is of the
form V, E, H, S, P, T ⇒a:i=... V′, E′, H′, S′, P′, T′ with unprimed
and primed symbols representing the state before and after the ex-
ecution of statement a. In cases where a set does not change (e.g.,
when S = S′), it is omitted. Node domain V contains nodes of the
form ah(c), where a denotes the instruction and h(c) denotes the
encoded integer of the object context c. Edge domain E : V × V is

ASSIGN

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(k)}

V, E, S ⇒a:i=k
V

′, E
′, S

′

COMPUTATION

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(k)} ∪ {ah(c)
⊲ S(l)}

V, E, S ⇒a:i=k⊕l
V

′, E
′, S

′

PREDICATE

V
′ = V ∪ {aǫ} S

′ = S

E
′ = E ∪ {aǫ

⊲ S(i)} ∪ {aǫ
⊲ S(k)}

V, E, S ⇒a:if (i>k){...}
V

′, E
′, S

′

LOAD STATIC

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(A.f)}

V, E, S ⇒a:i=A.f
V

′, E
′, S

′

STORE STATIC

V
′ = V ∪ {ah(c)} S

′ = S[A.f 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(i)}

V, E, S ⇒a:A.f=i
V

′, E
′, S

′

ALLOC

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

H
′ = H[ah(c) 7→ (′U ′, (new X)h(c),′ ′)]

P
′ = P[o 7→ (new X)h(c)]

V, H, S, P ⇒a:i=new X
V

′, H
′, S

′, P
′

LOAD FIELD

V
′ = V ∪ {ah(c)} S

′ = S[i 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(ov .f)}

H
′ = H[ah(c) 7→ (′C ′, P(ov), f)]

V, E, H, S ⇒a:i=v.f
V

′, E
′, H

′, S
′

STORE FIELD

V
′ = V ∪ {ah(c)} S

′ = S[ov.f 7→ ah(c)]

E
′ = E ∪ {ah(c)

⊲ S(i)}

H
′ = H[ah(c) 7→ (′B ′, P(ov), f)]

V, E, H, S ⇒a:v.f=i
V

′, E
′, H

′, S
′

METHOD ENTRY

S
′ = S[ti 7→ T(i)] for 1 ≤ i ≤ n

T
′ = (T(n + 1) ◦ ALLOCID(P(othis )), T(n + 1), T(n + 2), . . .)

S, T ⇒a:m(t1,t2,...,tn)
S
′, T

′

RETURN

T
′ = (S(i), T(2), T(3), . . .)

T ⇒a:return i
T

′

Figure 4. Inference rules defining the run-time effects of instru-
mentation.

a relation containing dependence relationships of the form al
⊲kn,

which represents that an instance of a abstracted as al is data de-
pendent on an instance of k abstracted as kn. Shadow environment
S : M → V maps a run-time storage location to the content in its
corresponding shadow location (i.e., to its tracking data). Here M is
the domain of memory locations. For each location, its shadow lo-
cation contains the (address of the) node that performs the most re-
cent write to this location. Rules ASSIGN, COMPUTATION, PREDI-
CATE, LOAD STATIC, and STORE STATIC update the environments
in expected ways. In rule PREDICATE, instruction instances are not
distinguished and the node is represented by aǫ.



www.manaraa.com

Rules ALLOC, LOAD FIELD and STORE FIELD additionally up-
date heap effect environment H, which is used to construct refer-
ence edges in Gcost . H : V → Z maps a node al ∈ V to a heap
effect triple (type, alloc, field) ∈ domain Z of heap effects. Here,
type can be ′U ′ (i.e., underlined) representing the allocation of an
object, ′B ′ (i.e., boxed) representing a field store, or ′C ′ (i.e., cir-
cled) representing a field load. alloc and field denote the object and
the field on which the effect occurs. For instance, triple (′U ′, O, ′ ′)
means that a node contains an allocation site O, while triple (′B ′,
O, f ) means that a node writes to field f of an object created by
allocation site O. A reference edge can be added between a (store)
node with effect (′B ′, O, ∗) and another (allocation) node with ef-
fect (′U ′, O, ′ ′), where ∗ represents any field name. In order to
perform this matching, we need to provide access to the allocation
site ID for each run-time object. This is done using tag environment
P that maps a run-time object to its allocation site ID.

However, the reference edge could be spurious if the store node
and the allocation node are connected using only allocation site
ID O, because the two effects (i.e., ′B ′ and ′U ′) could occur on
different instances created by O. To improve the precision of the
client analyses, object context is used again to annotate allocation
sites. For example, in rule ALLOC, H is updated with effect triple

(′U ′, (new X)h(c), ′ ′), where the allocation site new X is an-
notated with the encoded context integer h(c). This triple matches

only (store) node with effect (′B ′, (new X)h(c), ∗), and many
spurious reference edges can thus be eliminated. In rule ALLOC,

(new X)h(c) is used to tag the newly-created run-time object o (by
updating tag environment P), and this information will be retrieved
later when o is dereferenced. In rules LOAD FIELD and STORE

FIELD, ov denotes the run-time object that variable v points to.
P(ov) is used to retrieve the allocation site (annotated with the con-
text) of ov , which is previously set as ov’s tag upon its allocation.

The last two rules show the instrumentation semantics at the
entry and the return site of a method, respectively. At the entry of
a method with n parameters, tracking stack T contains the tracking
data for the actual parameters of the call, as the n top elements
T(1), . . . , T(n), followed by the receiver object chain for the caller
of the method (as element T(n+1)). In rule METHOD ENTRY, the
tracking data for a formal parameter ti is updated with the tracking
data for the corresponding actual parameter (stored in T(i)). The
new object context is computed by applying concatenation operator
◦ to the old chain T(n + 1) and the allocation site of the run-time
receiver object othis pointed to by this (or an empty string if the
current method is static). Function ALLOCID removes the context
annotation from the tag of othis, leaving only the allocation site
ID. The stack is updated by removing the tracking data for the
actuals, and storing the new context on the top of the stack. This
new context is available for use by all rules applied in the body of
the method (denoted by c in those rules). At the return site, T is
updated to remove the current context and to store the tracking data
for the return variable i.

The rule for call sites is not shown in Figure 4, as it requires
splitting a call site into a call part and a return part, and reason-
ing about both of them. Immediately before the call, the tracking
data for the actual parameters is pushed on tracking stack T. Im-
mediately after the call, the tracking data for the returned value is
popped from T and used to update the dependence graph and the
shadow location for the left-hand-side variable at the call site. If
the method invoked at the call site is a native method, we create
a node (without context) for it, and add edges between each node
contained in the shadow locations of the actual parameters and this
node, representing that the values of parameters are consumed by
this native method.

Implementation of P A natural idea of implementing object tag-
ging is to save the tag in the header of each object (i.e., the header
usually has unused space). However, in the J9 VM that we use, this
64-bit header cannot be modified. To solve this problem, the corre-
sponding 64 bits on the shadow heap are used to store the object tag.
Hence, although environments P and S have different mathmatical
meanings, both are implemented using shadow locations.

3. Relative Object Cost-Benefit Analysis

This section describes a novel diagnosis technique that identifies
data structures with high cost-benefit rates. As discussed in Sec-
tion 4, this analysis effectively uncovers significant optimization
opportunities in six large real-world applications. We propose to
compute a relative abstract cost for an object, which measures the
effort of constructing the object from data already available in fields
of other objects (rather than the cumulative effort from the begin-
ning of the execution). Similarly, we compute a relative abstract
benefit for an object, which explains how the data contained in the
object is used to construct other objects. These metrics can help
a programmer pinpoint specific objects that are expensive to con-
struct (e.g., there are large costs of computing the data being written
into this object) but are not very useful (e.g, the only use of this ob-
ject is to make a clone of it and then invoke methods on the clone).

We first develop an object cost-benefit analysis that aggregates
relative costs and benefits for individual fields of an object in order
to compute the cost and benefit for the object itself. Next, the cost
and benefit for a higher-level data structure is obtained in a similar
manner, by gathering costs and benefits of lower-level objects/data
structures accessible through reference edges.

3.1 Analysis Algorithm

DEFINITION 5. (Relative Abstract Cost). Given Gcost, the heap-

relative abstract cost (HRAC) of a node nk is Σaj |aj⇀nk freq(aj),

where aj ⇀ nk if aj
 nk and there exists a path from aj to nk

such that no node on the path reads from a static or object field.
The relative abstract cost (RAC) for an object field represented by

Od .f is the average HRAC of store nodes nk that write to Od .f .

Consider the entire flow of a piece of data (from the input of the
program to its output) during the execution. This flow consists of
multiple hops of data transformations among heap locations. Each
hop performs the following three steps: reading values from heap
locations, performing stack copies and computations on them, and
writing the results to other heap locations. Consider one single
hop with multiple sources and one target along the flow, which
reads values from heap locations l1, l2, . . . , ln, transforms them to
produce a new value, and writes it back to heap location l′. The
RAC of l′ measures the amount of work needed (on the stack) to
complete this hop of transformations.

The computation of HRAC for a node nk requires a backward
traversal from nk, which finds all nodes on the paths between
each heap-reading node and nk, and calculates the sum of their
frequencies. For example, the HRAC for node 35ǫ is only 1 (instead
of 5010), because the node depends directly on a node (i.e., 4O33 )
that reads heap location this.t. The RAC for a heap location is
the average HRAC of the nodes that can write this location. For
example, the RAC for Oǫ

33.t is the HRAC for 19O33 , which is 5008.

The RAC for OO32
24 .ELM (i.e., the elements of the array object) is

2, which equals the HRAC of node 28O32 that writes this field.

DEFINITION 6. (Relative Abstract Benefit). Given Gcost, the heap-

relative abstract benefit (HRAB) of a node nk is Σaj |nk⇁aj freq(aj),

where nk ⇁ aj if nk
 aj and there exists a path from nk to aj

such that no node on the path writes to a static or object field. The
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...

...

z.g = q

...

e.s = t u.x = w

m = i * 6 n = l - 5

i = a.f l = c.h
o = z.g

(a)

o.f = a 

O o = new O
A a = new A

B b = new B
o.g = b 

o.e = q 
...

a.h = c 
C c = new C

...

b.k = d 
D d = new D

...

...
t.m = v 

V v = new V

Level 1 Level 2 Level n
(b)

No heap read inside

No heap write inside

RACO.g t = r + 3 w = s >> 2

RABO.g

...

...

Figure 5. (a) Relative abstract cost and benefit. Nodes considered
in computing RAC and RAB for O.g (where O is the allocation
site for the object referenced by z) are included in the two circles,
respectively; (b) Illustration of n-RAC and n-RAB for the object
created by o = new O; dashed arrows are reference edges.

relative abstract benefit (RAB) for an object field represented by

Od .f is the average HRAB of load nodes nk that read from Od .f .

Symmetric to the definition of RAC that focuses on how a heap
value is produced, the RAB for l explains how a heap value is con-
sumed. Consider again one single hop (but with one source and
multiple targets) along the flow, which reads a value from loca-
tion l, transforms this value (together with values read from other
locations), and writes the results to a set of other heap locations
l′1, l

′
2, . . . , l

′
n. The RAB of l measures the amount of work per-

formed (on the stack) to complete this hop of transformations. For
example, the RAB for Oǫ

33.t is the HRAB of node 4O33 that reads
this field, which is 2 (because the relevant nodes aj are only 4O33

and 35ǫ). Figure 5 (a) illustrates the computation of RAC and RAB.
This definition of benefit captures both the frequency and the

complexity of data use. First, the more target heap values that the
value read from l is used to (transitively) produce, the larger benefit
location l can have for the construction of these other objects.
Second, the more effort is made to transform the value from l to
other heap values, the larger benefit l can have. This is because the
purpose of writing a value into a heap location is, intuitively, to
keep the value so that it can be reused later and the (heavy) cost of
re-computing it can be avoided. Whether to store a value in a heap
location is essentially a decision involving space-time tradeoffs. If
l’s value v can be easily converted to some other value v′ and v′ is
immediately stored in another heap location (i.e., little computation
performed), the benefit of keeping v in l becomes less obvious,
since v and v′ may differ slightly and it may not be necessary to
use two different heap locations to cache them. In the extreme case
where v′ is simply a copy of v, the RAB for l is 1 and storing v
is not desirable at all if the RAC for l is large. Special treatment
is applied to consumer nodes: we assign a large RAB to a heap
location if the value it contains can flow to a predicate or a native
node. This means the value contributes to control decision making
or is used by the JVM, and thus benefits the overall execution.

class ClasspathDirectory{
boolean isPackage(String packageName){

return directoryList(packageName) != null;
}
List directoryList(String packageName){

List ret = new ArrayList();  /*problematic*/  
//try to find all the files in the dir packageName
//if nothing is found, set ret to null
…
return ret; 

}    
}

Figure 6. Real-world example that our analysis found from
eclipse.

DEFINITION 7. (n-RAC and n-RAB). Consider an object refer-

ence tree RTn of height n rooted at Od. The n-RAC for Od is the

sum of the RACs for all fields Ok
i .f , such that both Ok

i and the ob-

ject Ok
i .f points to are in RTn. Similarly, the n-RAB for Od is the

sum of the RABs for all such fields Ok
i .f .

The object reference (points-to) tree can be constructed by using
reference edges in the dependence graph, and by removing cycles
and nodes more than n reference edges away from Od. We ag-
gregate the RACs and RABs for individual fields through the tree
edges to form the RACs and RABs for objects (when n = 1) and
high-level data structures (when n > 1). Figure 5 (b) illustrates
n-RAC and n-RAB for an object created by o = new O. The n-
RAC(RAB) for this object includes the RAC(RAB) of each field
written by a boxed node (i.e., heap store) shown in the figure. For
all case studies and experiments, n = 4 was used as this is the ref-
erence chain length for the most complex container classes in the
Java collection framework (i.e., HashSet).

Table (d) in Figure 3 shows examples of 1- and 2- RACs and

RABs. Both the 1-RAB and the 2-RAB for OO32
24 are 0, because the

array element is never used in the code. Objects Oǫ
32 and Oǫ

33 have
large cost-benefit rates, which indicates the existence of wasteful
operations. This is indeed the case in this example: for Oǫ

32, there
is an element added but never retrieved; for Oǫ

33, there is a large
cost of computing the value stored in its field t, and the value is
copied to another heap location (in IntList) immediately after
it is calculated. The creation of object Oǫ

33 is not beneficial at all
because this value could have been stored directly to the array.

Finding bloat Several usage scenarios are intended for this cost-
benefit analysis. First, it can find long-lived objects that are written
much more frequently than being read. Second, it can find contain-
ers that contain many more objects than they should. These con-
tainers are often the sources of memory leaks. The analysis can
find that they have large RAC/RAB rates because few elements are
retrieved and assigned to other heap locations. Third, it can find al-
location sites that create large volumes of temporary (short-lived)
objects. These objects are often created simply to carry data across
method invocations. Data that is computed and written into them is
read somewhere else and assigned to other object fields. This sim-
ple use of the data causes these objects to have large cost-benefit
rates. The next section shows that our tool finds all three categories
of problems in real-world Java applications.

Real-world example Figure 6 shows a real-world example that
illustrates how our analysis works. An object with high costs and
low benefits is highlighted in the figure. The code in the example
is extracted from eclipse 3.1.2, a popular Java development tool.
Method isPackage returns true/false based on whether the given
package name corresponds to an actual Java package. This method
is implemented by calling (reusing) directoryList which in-
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vokes many other methods to compute a list of files and directories
under the package specified by the parameter. isPackage then re-
turns whether the list computed by directoryList is null. While
the reference to list ret is used in a predicate, its fields are not read
and do not participate in computations. Hence, when the RACs and
RABs for its fields are aggregated based on the object hierarchy,
the imbalance between the cost and benefit for the entire List data
structure can be seen. To optimize this case, we created a special-
ized version of directoryList, which returns immediately when
the package corresponding to the given name is found.

3.2 Comparison to Other Design Choices

Cost/benefit for computation vs cost/benefit for cache Note that
the relative cost and benefit for an object are essentially measured
in terms of the computations that produce values written into the
object. The goal of this analysis is to find objects such that they
contain (relatively) useless values and these values are produced
by (relatively) expensive operations. Upon identifying these oper-
ations, the user may find more efficient ways to achieve the same
functionality. This is orthogonal to measuring the usefulness of a
data structure as a cache, where the cost of the cache should in-
clude only the instructions executed to create the data structure it-
self (i.e., without the cost of computing the values being cached)
and the benefit should be (re-)defined as a function of the amount
of work cached and the number of times the cached values are used.
It would be interesting to investigate, in future work, how these new
definitions of cost and benefit can be used to find inappropriately-
used caches.

Single-hop cost/benefit vs multi-hop cost/benefit The analysis
limits the scope of tracked data flow to one single hop—that is,
reading data from the heap, transforming it through stack locations,
and writing the results back to the heap. While this design choice
can produce easy-to-understand reports, it could miss problematic
data structures because of its “short-sightedness”. For example, our
tool may consider a piece of data that is ultimately-dead to be ap-
propriately used, because it is indeed involved in complex com-
putations within the one hop seen by the analysis. To alleviate this
problem, we have developed an additional analysis, based on Gcost,
which identifies computations that can reach ultimately-dead val-
ues. Section 4 presents measurements of redundant computations
based on this analysis.

A different way of handling this issue is to consider multiple
hops when computing costs and benefits based on graph Gcost , so
that more detailed information about data production and consump-
tion can be obtained. For example, costs and benefits for an instruc-
tion can be recomputed by traversing multiple heap-to-heap hops
on Gcost backward and forward, respectively, starting from the in-
struction. Of course, extending the inspected region of the data flow
would make the report hard to verify as the programmer has to in-
spect larger program scopes to understand the detected problems.
In future work, it would be interesting to compare empirically prob-
lems found using different scope lengths, and to design particular
tradeoffs between the scope length considered and the difficulty of
explaining the report.

Considering vs ignoring control decision making Our analysis
does not consider the effort of making control decisions as part
of the costs of computing values under these decisions. The major
reason is that by doing so we could potentially include the costs
of computing many values that are irrelevant to the value of inter-
est into the cost of that value, leading to imprecise and hard-to-
understand reports. However, ignoring this effort of control deci-
sion making could lead to information loss. For example, the tool
may miss problematic objects due to the underestimation of the
cost of constructing them. In future work, we will also be interested

in accounting for this effort, and investigating the relationship be-
tween the scope of control flow decisions considered (e.g., the clos-
est n predicates on which an instruction is control-dependent) and
the usefulness of the analysis output.

Other analyses Graph Gcost (annotated with other information)
can be used as basis for discovering a variety of performance-
related program properties. For example, we have implemented a
few clients that can answer specific performance-related queries.
These clients include an analysis that computes method-level costs
(i.e., the cost of producing the return value of a method rela-
tive to its inputs), an analysis that detects locations that are re-
written before being read, an analysis that identifies nodes produc-
ing always-true or always-false predicate conditions, and an analy-
sis that searches for problematic collections by ranking collection
objects based on their RAC/RAB rates. While these analyses are
currently implemented inside a JVM, they could be easily migrated
to an offline heap analysis tool that provides user-friendly interfaces
and improved operability (i.e., the JVM only needs to write Gcost

to external storage).

4. Evaluation

We have performed a variety of studies with our technique using
the DaCapo benchmark set [4], which contains 11 programs in
its original version (from antlr to eclipse in Table 1) and an
additional set of 7 programs in its new (beta) release (from avrora
to tradesoaps). We were able to run our tool on all these 18
large programs, including both client and server applications. 16
programs (except tradesoap and tradebeans) were executed
with their large workloads. tradesoap and tradebeans were run
with their default workloads, because these two benchmarks are not
stable enough and running them with large workloads can fail even
without our tool. All experiments were conducted on a 1.99GHz
Dual Core machine. The evaluation has several components: cost
graph characteristics, evaluation of the time and space overhead of
the tool, the measurement of bloat based on nodes producing dead
values, and six case studies that describe problems found by the
tool in real applications.

4.1 Gcost characteristics and bloat measurement

Parts (a) and (b) in Table 1 report, for two different values of s
(the number of slots for each object used to represent context),
the numbers of nodes and edges in Gcost, as well as the space
overheads and the time overheads of the tool. Note that all programs
can successfully execute when we increase s to 32, while the offline
traversal of the graph (to generate statistics) can make the tool
run out of memory for some large programs. The space overhead
does not include the size of shadow heap, which is 500Mb for
all programs. Note that the shadow heap is not compulsory for
using our technique. For example, it can be replaced by a global
hash table that maps each object to its tracking data (and an object
entry is removed when the object is garbage collected). The choice
of shadow heap in our work is just to allow quick access to the
tracking information. When the number of context slots s grows
from 8 to 16, the space overhead increases while the running time
is almost not affected. The instrumentation significantly increases
the running times (i.e., 71× slowdown on average for s = 8 and
72× for s = 16 when the whole-program tracking is enabled). This
is because (1) Gcost is updated at each instruction instance and (2)
the creation of Gcost nodes and edges needs to be synchronized
to guarantee that the tool is race-free. It was an intentional decision
not to focus on the performance of the profiling, but instead to focus
on the collected information and on demonstrating that the results
are useful for finding bloat in real-world programs. One effective
way of reducing overhead is to choose only relevant components



www.manaraa.com

Program (a) s = 8 (b) s = 16 (c) Bloat measurement for s = 16
#N(K) #E(K) M(Mb) O(×) CR(%) #N(K) #E(K) M(Mb) O(×) CR(%) #I(B) IPD(%) IPP(%) NLD(%)

antlr 183 689 10.2 82 0.066 355 949 16.1 77 0.041 4.9 3.7 96.2 17.5
bloat 201 434 9.8 78 0.089 396 914 17.4 76 0.051 91.2 26.9 69.9 19.3
chart 288 306 13.2 76 0.068 567 453 22.6 76 0.047 9.4 8.0 91.7 30.0
fop 195 120 8.4 45 0.067 381 162 14.0 46 0.045 0.2 28.8 60.9 30.5
pmd 184 187 8.0 55 0.075 365 313 13.6 96 0.052 5.6 7.5 92.1 27.0
jython 288 275 12.6 28 0.065 666 539 26.1 27 0.042 14.6 13.1 81.9 26.8
xalan 168 594 8.5 75 0.066 407 1095 18.1 74 0.044 25.5 17.8 82.0 19.4
hsqldb 192 110 8.0 88 0.072 379 132 13.7 86 0.050 1.3 6.4 92.4 31.0
luindex 160 177 6.7 92 0.073 315 331 11.5 86 0.040 3.5 4.6 93.0 24.6
lusearch 139 110 5.5 48 0.079 275 223 11.0 52 0.053 9.1 9.3 65.2 29.1
eclipse 525 2435 28.8 47 0.072 1016 5724 53.1 53 0.047 28.6 21.0 78.3 22.0
avrora 189 108 7.9 67 0.086 330 125 11.2 56 0.034 3.3 3.2 94.8 34.5
batik 361 355 15.8 85 0.086 662 614 24.9 89 0.049 2.4 27.1 71.1 26.7
derby 308 314 13.9 63 0.080 425 530 22.1 57 0.049 65.2 5.0 94.0 23.7
sunflow 206 152 8.2 92 0.076 330 212 10.3 91 0.040 82.5 32.7 43.7 31.7
tomcat 533 1100 25.4 94 0.098 730 2209 48.6 92 0.063 29.1 24.2 72.2 23.1
tradebeans 825 1010 38.2 89/8* 0.053 1568 1925 58.9 82/8* 0.036 15.1 14.9 80.0 22.3
tradesoap 860 1370 41 82/17* 0.062 1628 2536 63.6 81/16* 0.040 41.0 24.5 59.4 20.1

Table 1. Characteristics of Gcost. Reported are the numbers (in thousand) of nodes (N) and edges (E), the memory overhead (in megabytes)
excluding the size of the shadow heap (M), the running time overhead (O), and the context conflict ratio (CR). Part (c) reports the total number
(in billion) of instruction instances (I), the percentages of instruction instances (directly and transitively) producing values that are ultimately
dead (IPD), the percentages of instruction instances (directly or transitively) producing values that end up only in predicates (IPP), and the
percentages of Gcost nodes such that all the instruction instances represented by these nodes produce ultimately-dead values (NLD) .

to track. For example, for the two transaction-based applications
tradebeans and tradesoap, there is 5-10× overhead reduction
when we enable tracking only for the load runs (i.e., the application
is not tracked for the server startup and shutdown phases). Hence,
it is possible for a programmer to identify suspicious program
components using lightweight profiling tools such as a method
execution time profiler or an object allocation profiler, and run our
tool on the selected components for detailed diagnosis. It is also
possible to employ various sampling-based or static pre-processing
techniques (e.g., from [38]) to reduce the dynamic effort in data
collection.

A small amount of memory is required to store the graph, and
this is achieved primarily by employing abstract domains. The
space reduction resulting from abstract slicing can also be seen
from the comparison between the number of nodes in the graph (N)
and the total number of instruction instances (I), as N represents
the size of the abstract domain employed in the analysis while I
represents the size of the actual concrete domain that fully depends
on the run-time behavior of the application. CR measures the degree
to which distinct contexts are mapped to the same slots by our
encoding function h. Following [34], CR-s for an instruction i is
defined as:

CR-s(i) =

(

0 max0≤j≤s (dc[j]) = 1

max (dc[j])/
P

dc[j] otherwise

where dc[j] represents the number of distinct contexts that fall
into context slot j. CR is 0 if each context slot represents at most
one distinct context; CR is 1 if all contexts fall into the same slot.
The table reports the average CR for all instructions in Gcost.
Note that both CR-8 and CR-16 show very small numbers. This
is because many methods in a program only have a small number
of distinct object chains throughout the execution.

Columns IPD and IPP in part (c) report the measurements of
inefficiency for s = 16. IPD represents the percentage of instruc-
tion instances that produce only dead values. Suppose D is a set of
non-consumer nodes in Gcost that do not have any outgoing edges
(i.e., no other instructions are data-dependent on them), and D∗ is
a set of nodes that can lead only to nodes in D . Hence, D∗ con-
tains nodes that ultimately produce only dead values. IPD is calcu-
lated as the ratio between the sum of execution frequencies of the
nodes in D∗ and the total number of instruction instances during
the execution (shown in column I). Similarly, suppose P∗ is the set

of nodes that can lead only to predicate consumer nodes, and IPP
is calculated as the ratio between the sum of execution frequen-
cies of the nodes in P∗ and I. Programs such as bloat, eclipse
and sunflow have large IPDs, which indicates that there may ex-
ist large optimization opportunities. In fact, these three programs
are the ones for which we have achieved the largest performance
improvement after removing bloat (as discussed shortly in case
studies). Clearly, a significant portion of the set of instruction in-
stances is executed to produce only control flow conditions. While
this does not help performance diagnosis directly, a high IPP indi-
cates the program performs a large amount of comparisons-related
work, which may be a sign of over-protective or over-general im-
plementations.

Column NLD in part (c) reports the percentage of nodes in D∗,
relative to the total number of graph nodes. The higher NLD a pro-
gram has, the easier it is for a programmer to find problems from
Gcost. Despite the merging of a large number of instruction in-
stances in a single graph node, there are on average 25.5% nodes in
the graph that have this property. Large performance opportunities
may be found by inspecting the report to identify these wasteful
operations.

4.2 Case studies

We have carefully inspected the tool reports for the following six
large applications: bloat, eclipse, sunflow, derby, tomcat,
and trade. These applications have large code bases, and are
representatives of various kinds of real-world applications, in-
cluding program analysis tools (bloat), Java development tools
(eclipse), image renders (sunflow), database servers (derby),
servlet containers (tomcat), and transaction-based enterprise ap-
plications (trade). We have found significant optimization oppor-
tunities for unoptimized programs, such as bloat (37% speedup).
For the other five applications that have been well maintained and
tuned, the removal of the bloat detected by our tool can still re-
sult in considerable performance improvement (2%-15% speedup).
More insightful changes could have been made if we were familiar
with the overall design of functionality and data models. We use
the DaCapo versions of these programs, because the server applica-
tions are converted to run fixed loads, and the performance can be
measured simply by using running time rather than other metrics
such as throughput and the number of concurrent users. It took us
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about 2.5 weeks to find the problems and implement the fixes for
these six applications that we had never studied before.

sunflow Because it is an image rendering tool, much of its func-
tionality is based on matrix and vector computations, such as trans-
pose and scale. However, each such method in class Matrix and
Vector starts with cloning a new Matrix or Vector object and assigns
the result of the computation to the new object. Our tool reported
that these newly created (short-lived) objects have extremely large
unbalanced costs and benefits, as they serve primarily the purpose
of carrying data across method invocations. Another few lines of
the report directed us to an int array where some slots of the array
are used to contain float values. These float values are converted to
integers using method Float.floatToIntBits and assigned to
the array elements. Later, the encoded integers are read from the
array and converted back to float values. These operations occur in
the most-frequently executed methods in the program and are there-
fore are expensive to perform. By eliminating unnecessary clones
and bookkeeping the float values that need to be passed across
method boundaries (to avoid the back-and-forth conversions), we
observed 9%-15% running time reduction.

eclipse Some of the allocation sites that have the largest cost-
benefit rates create objects of inner classes and Iterators, which
implement visitor patterns to traverse the workspace. These visi-
tor objects do not contain any data and are passed into iterators,
where their visit method is invoked to process individual chil-
dren elements of the workspace. However, the Iterator used here is
a stack-based class that provides general functionality for travers-
ing different types of data structures (e.g., graph, tree, etc.), while
the workspace has a very simple tree structure. We replaced the
visitor implementation with a worklist implementation, and this
simple specialization eliminated millions of run-time objects. The
second major problem found by the tool is with the hash compu-
tation implemented in a set of Hashtable classes in the JDT plu-
gin. One of the most frequently used classes in this set is called
HashtableOfArrayToObject, which uses arrays of objects as
keys. Every time the Hashtable is expanded, its rehash method
needs to be invoked and the hash codes of all existing entries
have to be recomputed. Because the key can be a big object array,
computing its hash code can trigger invocations of the hashcode
method in many other objects, and can thus take considerably large
amount of time. We created an int array field in the Hashtable class
to cache the hash codes of the entries, and the recorded hash codes
are used when rehash is executed. To conclude, by removing these
high-cost-low-benefit operations, we have managed to reduce the
running time by 14.5% (from 151s to 129s), and the number of
objects by 2% (5.5 million).

bloat Previous work [34] has found that bloat suffers from ex-
cessive string creations. This finding is confirmed by our tool re-
port. 46 allocation sites out of the top 50 that have the largest cost-
benefit rates are String and StringBuffer objects created in the
set of toString methods. Most of these objects eventually flow
into methods Assert.isTrue and db, which print the strings when
certain debugging-related conditions hold. However, in production
runs where most bugs have been fixed, such conditions can rarely
evaluate to true, and there is no benefit in constructing these objects.
Another problem exposed by our tool (but not reported in [34]) is
the excessive use of objects of an inner class NodeComparator,
which contains no data but methods to compare a pair of AST
nodes. The comparison starts with the given root nodes, and re-
cursively creates NodeComparator objects to compare children
nodes. Comparing two large trees usually requires the allocation
(and garbage collection) of hundreds of objects, and such compar-
isons occur in almost all methods related to ASTs, even includ-
ing hashcode and equals. Eliminating the unnecessary String

and StringBuffer objects and replacing the visitor pattern with
a breadth-first search algorithm result in 37% reduction in running
time, and 68% reduction in the number of objects created.

derby The tool report shows that an int array in class FileContainer
has large cost-benefit rates. After inspecting the code, we found it
is an array containing the information of a file-based container. Ev-
ery time the (same) container is written into a page, the array needs
to be updated. Hence, it is written much more frequently (with
the same data) than being read. To solve the problem, we modify
the code to update this array only before it is read. Another set of
objects that were found to have unbalanced cost-benefit rates are
the strings representing IDs for different ContextManagers. These
strings are used to retrieve the ContextManagers in a variety of
ways, but mostly serve as HashMap keys. Because the database
contexts are frequently switched, clear performance improvement
can be seen when we replaced these strings with integer IDs. Even-
tually, the running time of the program was reduced by 6%, and the
number of objects created was reduced by 8.6%.

tomcat tomcat is a well-tuned JSP and servlet container. There
are only a few objects that have large cost-benefits according to the
tool report. One set of such objects is arrays used in util.Mapper,
representing the (sorted) list of existing contexts. Once a context is
added or removed from the manager, an update algorithm is exe-
cuted. The algorithm creates a new array, inserts the new context at
the right position in this new array, copies the old context array to
the new one, and discards the old array. To remove this bloat, we
maintain only two arrays, using them back and forth as the main
context list and the backing array used for the update algorithm.
Another problem reported by our tool pointed to string compar-
isons in various getContents and getProperty methods. These
methods take a property name and a Class object (representing the
type of the property) as input, and return the value corresponding to
the property using reflection. To decide the type of the property, the
implementations of these methods first obtain the names of the ar-
gument classes and compare them with the embedded names such
as ”Integer” and ”Boolean”. Because a property can have only a
few types, we remove such string comparisons and insert code to
directly compare the Class objects. After the modifications, the
program could run 3 seconds faster (about 2% reduction).

tradebeans tradebeans is an EJB application that performs
database queries to simulate a stock trading process. One prob-
lem that our tool reported was with the use of KeyBlock and its
iterators. This class represents a range of integers that will be given
as IDs for the accounts and holdings when they are requested.
We found that for each ID request, the class needs to perform a
few redundant database queries and updates. In addition, a simple
int array can suffice to represent IDs since the KeyBlock and the
iterators are just wrappers over integers. By removing the addi-
tional database queries and using directly the int array, we have
manged to make the application run 9 seconds faster (from 350s
to 341s, 2.5% reduction). The number of objects created was re-
duced by 2.3%. DaCapo has another implementation (tradesoap)
of trade, which uses the SOAP protocol to perform client-server
communication and runs much slower than tradebeans. An inter-
esting comparison between these two benchmarks is that the major
high-cost-low-benefit objects reported for tradesoap are the bean
objects created in the set of convertXBean methods. As part of the
SOAP protocol, these methods perform large volumes of copies be-
tween different representations of the same bean data, resulting in
significant performance slowdown. Developers can quickly find
such (design) issues leading to the low performance after inspect-
ing the tool reports.

Summary With the help of the cost-benefit analyses, we have
found various performance problems in these large applications
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with which we do not have any experience. These problems include
inefficiencies caused by common programming idioms such as
visitor patterns, repeated work whose result needs to be cached
(e.g., the hash code example in eclipse), computation of data not
necessarily used (e.g., strings in bloat), and choices of expensive
operations (e.g., string comparison in tomcat and the use of SOAP
in tradesoap). For specific bloat patterns such as the use of inner
classes, it is also possible for the compiler/optimizer designers to
take them into account and develop optimization techniques that
can remove the bloat while not having to restrict programmers from
using these patterns.

5. Related Work

There is a very large body of work related to dynamic slicing, dy-
namic flow analysis, and bloat detection. Due to space limitations,
we only discuss techniques closely related to the work presented in
this paper.

Performance measurement for optimizations Performance mea-
surement is key to optimization choices made in modern runtime
systems. Existing approaches for performance measurement at-
tribute cost to some coarse-grained program entities, such as meth-
ods and calling contexts [31, 42]. The cost (e.g., frequency) is then
used to identify hot spots and guide optimizations. On the con-
trary, our work computes finer-grained cost at the instruction level
and uses it to understand performance and detect program regions
that are likely to contain wasteful operations. The work from [12]
proposes a technique that constructs models of empirical compu-
tational complexity, which can be used to predict the execution
frequency of a basic block as a function of the program’s work-
loads. While the profiling results can expose performance problems
in general, they do not provide any information about the flow of
data. In many cases, data flow information can be more useful in
detecting performance bugs than execution frequencies [26, 34].

Dynamic slicing A general description of slicing technology and
challenges can be found in Tip’s survey [32]. Recently, the work
by Zhang et al. [37, 38, 39, 40, 41] has significantly advanced the
state of the art of dynamic slicing. This work includes, for example,
a set of cost-effective dynamic slicing algorithms [38, 40], a slice-
pruning analysis that computes confidence values for instructions
to select those that are most related to errors [37], a technique that
performs online compression of the execution trace [39], and an
event-based approach that reduces the cost by focusing on events
instead of individual instruction instances [41]. Sridharan et al.
propose thin slicing [30], a technique that improves the relevance
of the slice by focusing on the statements that compute and copy
a value to the seed. Although this technique is originally proposed
for static analysis, it fits naturally in our dynamic analysis work.

Our work is fundamentally different from these existing tech-
niques in the following ways. Orthogonal to the existing profile
summarization techniques such as [1, 3, 10, 39], abstract slicing
achieves efficiency by introducing analysis semantics to profiling,
establishing a foundation for solving a range of backward dynamic
flow problems. As long as an analysis can be formulated in our
framework, the profiled information is sufficiently precise for the
analysis. Hence, although our approach falls into the general cate-
gory of lossy compression, it can be lossless for the specific analy-
sis formulated. The work from [41] is more related to our work in
that the proposed event-based slicing approach is a special case of
abstract slicing with the domain D containing a set of pre-defined
events. In addition, all the existing work on dynamic slicing targets
automated program debugging, whereas the goal of our work is to
understand performance and find bottlenecks.

Leak/bloat detection A body of work has been devoted to man-
ually [22] or automatically [5, 7, 8, 11, 13, 18, 20, 21, 35] detect-
ing memory leaks and bloat in large-scale Java applications. Work
from [21, 22] proposes metrics to provide performance assessment
of use of data structures. Recent work by Shankar et al. [29] mea-
sures object churn and then enables aggressive method inlining
over the regions that contain excessive temporary objects. The re-
search from [26] proposes a false-positive-free technique that iden-
tifies stale objects based on data sampling. The work from [28]
presents a collection-centric technique that makes appropriate col-
lection choices based on a dynamically collected trace on collection
behaviors. Work from [36] proposes a static analysis that can auto-
matically discover container structures and find inefficiencies with
use of containers. Our previous work [34] proposes a copy profiling
technique that identifies bloat by profiling copy activities. Similarly
to our Gcost which contains dependence relationships, these activ-
ities are recorded in a copy graph, which is used later for offline
analysis.

The major difference between the core techniques in our work
and all the existing bloat detection work lies in the different symp-
tom definitions used to locate bloat. For example, existing ap-
proaches find bloat based on various kinds of suspicious symp-
toms (e.g., excessive copies [34], redundant collection space [28],
large numbers of temporary objects [11, 29], and object stale-
ness [5, 26]). On the contrary, we detect bloat by capturing directly
the core pf the problem, that is, by looking for the objects that have
high cost-benefit rates. In fact, unbalanced cost and benefit can be
a more general indicator of bloat than specific symptoms, because
it is common for the wasteful operations to produce high-cost-low-
benefit values while these operations may exhibit different observ-
able symptoms.

6. Conclusions and Future Work

What is the cost of constructing this object? Is that really worth
performing such a heavyweight operation? We hear these questions
all the time during software development. They represent the most
natural and explicit form in which a programmer can express her
concern on performance. Tuning could have been much easier if
there existed a way so that these questions can be (even partially)
automatically answered. As a step toward achieving the goal, this
paper introduces a dynamic analysis of data flow, given the fact that
much functionality of a large application is about massaging data.
Optimizations based on pure control flow information (e.g., execu-
tion frequency) can no longer suffice to capture the redundancy that
accumulates during data manipulation. This work is not only about
the measurement of the cost of generating a piece of data, but more
importantly, it computes an assessment of the way this data is used.
Instead of focusing on bytes and integers, this assessment is made
at the data structure level as object-oriented data structures are ex-
tensively used and programmers often do not need to be aware of
their internal implementations during development.

In future work, we plan to extend the notions of cost and benefit
(defined in terms of computations in this paper) in many other ways
to help performance tuning. One example is to measure the effec-
tiveness of the data structures used as caches. The way of redefining
costs and benefits for caches was discussed in Section 3. As another
example, one can adapt the cost and benefit for data presented in
this paper to measure performance of control-flow entities, such as
methods, components, and plugins. Faced with a large and complex
application, a developer would need to first identify such coarser-
grained program constructs that can potentially cause performance
issues, in order to track down a performance bug through subse-
quent more detailed profiling. In addition, it is possible in future
work to consider the space of other design choices that are dis-
cussed in Section 3. Other than the work of bloat detection, we are
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also interested in investigating future extensions and applications of
abstract slicing as a general technique, so that it could potentially
benefit a wider range of dynamic analyses.
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